287 research outputs found

    Improving/Boosting perovskite solar cells performance by using high quality TiO2/graphene-based nanocomposites as electron transport layer

    Get PDF
    International audienceIn the context of energy transition, development of efficient and cost-effective solar cells is a major objective to establish an optimal energy mix. The 3 rd generation of photovoltaic cells emerged to develop high efficient and low-cost cells combining the use of abundant materials and easy processes. Among them, photovoltaic cells based on perovskite materials demonstrated several significant advances with power conversion efficiencies up to 22% [1][2]. Nevertheless, efforts remain to be performed to improve the charge generation and collection of this kind of cell. Titanium dioxide mesoporous layer, while remaining an important component for perovskite structuration and electron transport in high efficiency devices, can indeed still promote charge trapping and recombination. As carbon nanostructures are good electron transporters, the use of TiO2/graphene nanocomposites seems to be a relevant strategy to reduce recombination phenomena and thus improve electron collection [3]. To achieve high quality of nanocomposites presenting well-controlled physical properties suitable for efficient and stable solar cells, we use the singular technique of laser pyrolysis, which enables to synthetize nanoparticles in a single step with a continuous flow. Attention is payed to the materials properties and their role and effect within solar cells. Tests were conducted with a MAPI-Cl perovskite deposited in a single-step following a reported procedure [4]. Our first results show a better electron injection efficiency from the perovskite to the mesoporous TiO2 layer with graphene, observed through steady-state photoluminescence spectroscopy. This tendency has been reinforced by devices performance that show larger photocurrents and smaller series resistance under standard illumination. More generally an increase in power conversion efficiency from 14.1 % to 15.1 % for these devices is reached for perovskite solar cells containing graphene in the mesoporous layer, demonstrating the benefit of the laser pyrolysis process for the production of high quality electron transport layer

    Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses

    Get PDF
    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents

    Engineered inorganic core/shell nanoparticles

    Get PDF
    International audienceIt has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed

    Towards silicon as possible optical imaging agent?

    No full text
    International audienc

    Synthèse de nanoparticules d'oxydes de titane par pyrolyse laser - Etude des propriétés optiques et de la structure électronique

    No full text
    La synthèse de nanoparticules d oxydes de titane par pyrolyse laser est étudiée dans ce mémoire. Cette technique de synthèse en voie gaz originale nous permet de modifier de manière souple les conditions de réaction et d obtenir en une seule étape de synthèse des nanoparticules de taille, composition chimique et structure cristallographique contrôlées.Lors de cette étude, deux voies ont été envisagée afin de synthétiser des nanoparticules d oxydes de titane présentant une absorption dans le domaine du visible. D une part la synthèse de dioxyde de titane (TiO2) dopé azote et d autre part, la synthèse d oxydes de titane moins oxydés que le TiO2.Premièrement, la synthèse de nanoparticules de dioxyde de titane est réalisée grâce à l utilisation du tetraisopropoxyde de titane comme précurseur. La pyrolyse laser nous permet de contrôler la phase de TiO2 obtenue, anatase ou rutile. Puis, en employant l ammoniac comme dopant, nous avons pu synthétiser du TiO2 anatase dopé azote, présentant une absorption dans le visible.Deuxièmement, en modifiant les paramètres de synthèse, il a été possible de synthétiser des phases de Magnéli sous forme de nanoparticules, présentant également une absorption dans le visible. Il a également été possible d obtenir à pression atmosphérique la phase TiO2-II, qui est une phase haute pression du TiO2, par oxydation d une des phases de Magnéli. Troisièmement, en employant l effet réducteur de l ammoniac nous avons réussi à synthétiser des nanoparticules d oxynitrures de titane Ti(O,N). Une étude poussée par diffraction de rayons X, spectroscopie d absorption des rayons X, spectroscopie de photoélectrons X, spectroscopie de perte d énergie électronique ainsi qu une étude en température, nous ont permis de bien caractériser la structure de cette phase peu commune. De plus, les propriétés optiques se sont révélées très intéressante, puisque le matériau subit une transition métal/semi-conducteur selon son oxydation et présente une absorption très importante dans la région du visible.Enfin, les nanoparticules de TiO2 et de TiO2 dopées azote ont été employées pour l élaboration de cellules solaire tout solide à colorant organique. Les premiers résultats montrent d une part que la morphologie des ces nanoparticules est adaptée à leur emploi pour ce type de dispositifs, avec des rendements proche de l état de l art mondial. Et d autre part, que le dopage à l azote permet de collecter une quantité de photons plus importante grâce au domaine d absorption de ces nanoparticules et de générer une densité de courant plus élevée.The synthesis of titanium oxide nanoparticles by laser pyrolysis is studied in this work. This original gas phase technique is a versatile method which allows us to obtain a one-step synthesis of nanoparticles of controlled size, chemical composition and crystalline structure.In this study, two approaches have been proposed to synthesize titanium oxides nanoparticles with absorption in the visible range. In the first place, the synthesis of nitrogen doped titanium dioxide (TiO2) and second, the synthesis of less oxidized titanium oxides than TiO2.First, the synthesis of titanium dioxide nanoparticles is achieved through the use of titanium tetraisopropoxide as a precursor. The laser pyrolysis allows us to control the obtained TiO2 phase, anatase or rutile. Then, using ammonia as a dopant, we were able to synthesize nitrogen doped TiO2 anatase, with an absorption in the visible.Second, by changing the synthesis parameters, it was possible to synthesize nanoparticles of Magnéli phases, also having absorption in the visible. It was also possible to obtain under atmospheric pressure the TiO2-II phase, a high-pressure phase of TiO2 by oxidation of one of the Magnéli phases.Third, using the reducing effect of ammonia we were able to synthesize titanium oxynitrides, Ti(O,N). A detailed study by X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy and a study in temperature, allowed us to characterize the structure of this unusual phase. In addition, the optical properties were very interesting, since the material undergoes a transition metal/semiconductor depending on its oxidation and has a very high absorption in the visible region.Finally, the TiO2 nanoparticles and nitrogen doped TiO2 were used for the development of solid state, dye-sensitized solar cells. Initial results show that the morphology of these nanoparticles is suitable for their use for such devices, with yields close to the world state of the art. Secondly, it shows that the nitrogen doping allows to collect a larger amount of photons, through the area of absorption of these nanoparticles and to generate a higher current density.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    The benefits of graphene for hybrid perovskite solar cells

    No full text
    International audienceDue to their uncommon electronic properties, carbon-based nanomaterials have led to extensive research efforts in the field of photovoltaic energy conversion in the last two decades. Initially exploiting carbon nanotubes, carbon-based solar cells have now largely taken benefit from graphene and its various forms to demonstrate significant improvements in almost all device functions including charge generation, charge collection, and charge transport. More recently, hybrid metalorganic halide perovskites became one of the most promising materials for third generation solar cells, with efficiencies now competing with thin film technologies. While several issues remain to be addressed regarding device operation and stability, the incorporation of carbon-based nanostructures was rapidly proposed, and significant advances have been achieved so far. In this work, we review the recent progresses made in the specific field of graphene-based perovskite solar cells. We especially emphasize the relevance of the approach applied to hole and electron transport media (HTM and ETM), electrodes, as well as approaches aiming at improving the stability of the device. Tandem architectures based on graphene interlayers will also be discussed, illustrating the broad potentialities of graphene materials in the development of the perovskite-based photovoltaic technology
    corecore